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Abstract-A lower bound on maximum deformation is determined for rigid-plastic structures subjected to
time dependent loads. This bound on deformation amalgamates and slightly extends two previous bounds.
It is easily calculated based on an assumed velocity field that is kinematically admissible. Comparisons are
made between tbis bound, the complementary upper bound by Robinson[51. and the analytical solution for
maximum deformation of five different structural elements. Thus, characteristics of the structure and
applied tractions that affect accuracy of the bound are examined. In two cases. the stress field transition
from bending at small deformations to membrane stresses at large deformation is demonstrated.

INTRODUCTION
Despite the simplification of the rigid-plastic material idealization, analytical solutions for
plastic deformation in dynamically loaded structural elements have been found for only a few
problems. Two approaches have been used to estimate deformations for a broader class of
problems: modal approximation and bounding theorems. Both approaches simplify cal
culations by assuming a time independent, kinematically admissible displacement field or
statically admissible load. Although nodal approximations are frequently closer to the analytical
solution, the certainty of bounding theorems may be preferred. This is particularly so when
both upper and lower bounds can be easily calculated.

An upper bound theorem on maximum displacement and a lower bound theorem on
response time for impulsively loaded, rigid-plastic structures were first obtained by Martin [I ,
2J. This displacement bound on a selected point in the body is in terms of the initial kinetic
energy and a statically admissible field of surface tractions and body forces. Ploch and
Wierzbicki[3J extended the range of applicability of this bound to include large deformations.
For cases of time dependent rather than impulsive loads, a lower bound on response time and
an upper bound on displacement were derived by Kaliszky[4J and Robinson[5] respectively.
Robinson's displacement bound has had limited use since it requires the analytical solution to
the problem during the time that tractions are non-zero.

A complementary lower bound theorem on maximum displacement was obtained by Morales
and Neville[6] for the case of impulsive loads. This lower bound was clarified by Wierzbicki[7, 8]
who also commented on its usefulness with an arbitrary distribution of initial velocity.

The present investigation slightly extends a lower bound on maximum final displacement for
time-dependent tractions with arbitrary spatial distributions by Morales [6, 9]. In terms of
applied load, this bound is complementary to Robinson's upper bound. This lower bound on
maximum displacement is compared with several exact solutions from beam and plate defor
mation analyses. As part of the derivation of the displacement bound, a lower bound on
structural response time is also determined.

PROBLEM FORMULATION

A body with volume V is composed of a rigid-plastic material with density p. The body,
which is moving with an initial velocity distribution VjO(Xj) , is subjected to time-dependent
tractions T j on the surface S. Body forces are assumed to be negligible.

The body deforms when tractions and initial velocity are sufficiently large that stresses
across some cross section equal the yield stress. Let t =0 be the time this structural yield
condition is first satisfied. The response of the body at any time t > omay be characterized by
time dependent velocity and acceleration fields Uj, Ui and the associated time dependent stress
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and strain-rate fields CTij, Eij' The strain-rate field is related to the yield function <!J(CTij) through
the flow rule

where a rigid-plastic material is defined by

(<!J(CTij} = 0 for <!J(CTij) <0

(<!J(CTij» = 1 for <!J(CTij) = 0

(1)

(2)

and <!J(CTij) > 0 is not admitted. Convexity of the yield function and normality of the plastic
strain-rate vectors Eff to the yield surface <!J = 0 are consequences of Drucker's postulate for
stable materials [9]

(3)

where CTFi is any stress state satisfying <!J(CT4) 0 while q,(CTij) < O. During any motion u/'
resulting in CT~ somewhere in the body, plastic deformation dissipates energy. Define an energy
dissipation rate D(ut) for the body. Then

(4)

The inequality results from the stability postulate.
Suppose one assumes some kinematically admissible velocity field Uj* and define CTij *, Eif* as

the stress and strain-rate fields associated with the assumed velocity field. Then, the principle of
virtual velocities results in

(5)

where at any instant of time, the stress and acceleration fields in the body CTij, Ui are in
equilibrium with the applied tractions Ti. Since the assumed stress and strain-rate fields CTij*, Eij*
satisfy eqns (1) and (2) for a rigid-plastic material, the assumed velocity field Ui* satisfies the
basic inequality for total energy dissipated during the time of motion, tf; hence

i'f f i'f f itl

D(Ui*) dt?: dS TiUi* dt - dV PUiUi* dt.
o S 0 v 0

(6)

LOWER BOUND ON RESPONSE TIME

It will be shown that a structure subjected to dynamic loads has a response time that is
longer than the response time of the same structure in an assumed deformation mode. Consider
an assumed velocity field that is independent of time ui*(Xj, t) == v;*t/J*(Xj) where t/J* S 1. Then
D(u;*) is also independent of time when strain-rate and deformation rate are linearly related.t
After integrating the last term in eqn (6) by parts

(7)

where v?(Xj) is the initial velocity field imparted by any impulsive load. This integration requires
that the direction cosines of the actual velocity field remain constant during the deformation
process. Now, if the pressure pulse duration is T, compact pulses are defined as having T ~ t[.

tGenerally, when D(Ui*) is not independent of time, the largest energy dissipation rate occuring during a deformation
must be used.
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Noting that the tractions Ti(t) only act during t;;:'; 'T, the lower bound on response time to
compact pulses will be

(8)

Kaliszky[4} obtained an equivalent lower bound on response time for tractions that are
separable functions Ti :;= p(t)TiO(x). However, the restriction of separability has not been
required in this prooft.

When the body is initially at rest, what is required are tractions that are larger than a static
distribution of traction that will cause structural collapse in the assumed deformation mode.
Call this static collapse loading T/. Consequently, when Via = 0, this bound applies to timewise
compact pulses where Ti > T/.

An alternative expression for the lower bound on structural response time can be developed
from considerations on the rate of work done by the static collapse force T{, for the assumed
velocity field. Let T/ be a statically admissible force at each point of maximum velocity in the
assumed velocity field (ifJ = 1). Tt is coincident with the maximum velocity vector, Vj*. The
corresponding stress field, ali may have isolated regions where !/>(ali) = 0 but there is no
mechanism so collapse does not occur. Hence, ut = 0 and the principle of virtual velocities
gives

(9)

Subtracting eqn (9) from (5)

Now consider the stress state as the statically admissible tractions approach the static collapse
force for the assumed deformation mode. In regions where IEij*1 > 0, lim ali = ajj*' Con

Tt-+T{

sequently, the stability postulate (3) results in an inequality,

Is (Ti - Tt)Uj* dS - Iv PUiUi* dV;;:.; o. (11)

This equation can be easily integrated with respect to time after it j * is specified. When the
assumed velocity field is independent of time, this gives a lower bound on response time.

(12)

where

(13)

A time independent assumed velocity field and the associated static collapse force have the
same stress field in the region where lEi/I> O. Hence, by eqn (9) T{Vi* = D(Ui*)' The bound on
response time is identical with eqn (8) whenever strain-rates are only proportional to defor
mation rates.

tTing. Lee. Mukherjee and Nystrom previously derived tbis bound for time dependent tractions that are not separable
functions[10J.
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LOWER BOUND ON MAXIMUM DISPLACEMENT

Morales found a lower bound on maximum displacement by using the principle of virtual
velocities on an assumed, kinematically admissible velocity field[9]. Let Ui* be a velocity field
that decreases linearly with time during tf *,

fJ4'

where the initial velocities are u~* = v~*I{1*(xJt. From eqn (5), the total energy dissipated inthis
deformation mode during tf will be

After interchanging the order of integration, the last term can be integrated by parts. Noting
that Ui* = 0 for t > t/

t
1
*1 put*Uj(x,tf)dV= ft/dtJ. TjUiO*(l-tltf*)dS+J PUjo*ujOdV

f v Jo S v

- L't dt Iv ai~)O ~ tlt/} dV. (16)

The mean value theorem for integrals and the energy dissipation rate inequality (4) can be used
in this equation to obtain the lower bound on the largest final displacement

Sj Iv PUiO* dV~ Iv PUiO*U;(X, tf}dV ~ tt*{L'I' dt LT;u,o*(1- tlt/) dS

+ Iv PUiO* UiO d V - tf*D(u; *}/2}. (7)

Then S = max [Sa where

OJ = max rub, tf)]' XEV. (18)

Independent bounds corresponding to different components of displacement result from a set
of assumed velocity fields Ui* that each involve a separate velocity component [I 1].

This displacement bound is the same as that derived by Wierzbicki[8] for impulsive loads
where Tj = 0 during t > 0 and by Morales [9] for time-dependent tractions. It is not necessary
for the initial impulse to be uniformly distributed. The bound is satisfactory for any arbitrary
distribution of traction or initial velocity.

The lower bound on maximum displacement can be expressed more concisely as

(19)

by using the bound on response time, eqn (8).
The difference between this lower bound and the analytical solution generally depends on

the number of spatial co-ordinates of the deformation field. The results from the use of the
mean value theorem. (Maximum and mean displacements are closer in one dimensional
deformation than they are in two dimensional deformation.)

tThis velocity field results in the largest lower bound of the general class of time dependent functions, Ui* u,o*( I - tllf*)"
where n ;;;; I [23].
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APPLICATIONS

Simply supported beam under uniform pressure
A simply supported beam of length 2L and mass m per unit length deforms under a

uniformly distributed pressure p(t). Lower bounds on the final centre displacement will be
obtained for rectangular, triangular and exponentially decreasing pressure pulses.

The assumed velocity field is piecewise linear and symmetric about a centre plastic hinge,
that is

u*== v*xlL for O~x~L.

Hence, for a beam with yield moment Mo

D == 2Mov*IL

(20)

(21)

The response time and final displacement lower bounds, t/ and S*, calculated for three
pressure pulse shapes are shown in Table 1. In this table, A == PIPo is the ratio of peak pressure
to static collapse pressure, T is the characteristic time of pulse duration and

1 (oo
To == P Jo pdt (22)

is a mean traction duration time that may be used to eliminate most effects of pulse shape[12,
13]. The analytical solutions for flexural deformation shown in Table 1 are for peak pressures
A> 3 where the rigid-plastic material model is most appropriate.

Figure 1 illustrates the same comparisons. The compact set of analytical solutions resulting
from nondimensionalization using To is compared with the upper and lower displacement
bounds. The upper bound is determined by assuming the total impulse is applied impulsively (at
t == 0).

Clamped beam under central impulsive load
A clamped rigid-plastic beam of length 2L and mass m per unit length is accelerated by an

impulsive pressure acting over a central segment of length 2b. This segment is given an initial
transverse velocity V

O while the remainder of the beam remains at rest. The ends of the beam
are clamped to prevent both rotational and axial displacement. Bounds related to flexural and
membrane deformations will be calculated.

Assuming a piecewise linear velocity field that is symmetric about a centre plastic hinge,

u* == v*xlL for 0< x < L.

Hence, the dissipation rate at the centre hinge and the two end hinges will be

D* =4Mov*IL

(23)

(24)

Table 1. Comparison of simply supported' beam displacement bounds with high pressure solutions for three pulse shapes

Pressure Elf. Load Response Lower displacement bound Displacement Upper displ. bound
time time 8*mL2/MoTo

l 8mL2/MoTo2 8**mL2/MoTo
2

To 11*

p={P,I<1
,\.'T .\.(.\. -I) 4.\. 3

2.\.2O. I> J T(A -.)

P = r(l-III), t < 1 .! AT .\.
~(A-I) 2.\.2

O. t >1 2 T 3(3.1. -4)
3

P = Pe-tl, 1 2.\.1(1 e-I) 2.\.[.\.(1 +e-tf'h)(I - e-I) - l] t 2.\.2

tThe analytical solution is lengthy and requires numerical evaluation.
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where Mo is the yield moment for the beam. The bound on response time is

(25)

A lower bound for the centre displacement calculated with the assumed velocity field (23) is

A corresponding upper bound calculated by Martin's Theorem is

(26)

0(* (27)

whereas the flexural solution for final centre displacement [14] is

(28)

(This solution requires b> H, the beam height.) These bounds and the solution for the centre
displacement of a clamped beam with an impulsive velocity over a central region are illustrated
in Fig. 2.

In a clamped, rigid-plastic beam of rectangular cross-section, the "plastic hinge" phase of
motion ends when 8/H "" 1. A "plastic-string" phase of motion describes larger deflections
where extension is predominant over flexure. In this phase of motion the entire cross-section of
the beam is in tension. The resultant force is the fully plastic yield force, No.

A lower displacement bound for this phase of motion can be calculated by again assuming
the piecewise linear velocity field in eqn (23).t Since the centerline strain-rate is E"" uitfe in

Hf the assumed velocity distribution is sinusoidal rather than linear. a smaller value is calculated for the lower
displacement bound.
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this deformation mode, the largest dissipation rate is

An expression for the lower bound on response time is therefore

1055

(29)

(30)

which cannot be evaluated until a solution is obtained for S. A lower bound for the centre
displacement is

(31)

In Fig. 3 this displacement bound is compared with the solution for centre deflection of a
clamped beam subject to a uniformly distributed initial velocity [15]. The parameter f3 generally
depends on properties of the beam cross-section. For rectangular beams, f3 "'" L/H. The
transformation from a bending to a string lower bound occurs at values of SI H "'" I (the correct
lower bound is the least lower bound). Consequently, the lower bound on response time will be
given by eqn (25) for S/H < 1 and by eqn (30) for larger deformations.

Cantilever beam with tip mass
A cantilever beam of length L and mass m per unit length is impacted at the tip by a mass G

that adheres to the beam. G impacts with velocity v ti transverse to the axis of the beam. Both
upper and lower bounds on the final tip displacement will be calculated for this example of a
concentrated impulsive load.

Assume a velocity field corresponding to a hinge at the base of a rigid beam

u* = v*xlL. (32)

When the beam has a yield moment Mo, the energy dissipation rate for the assumed velocity
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field is
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CENTER DISPLACEMENT OF IMPULSIVELY LOADED BEAM

Fig. 3.

D;=: Mov*/L (33)

The bound on response time for the impulsive load is therefore

The lower bound on tip displacement calculated for the assumed velocity field is

(34)

(35)

where 1 == mL/2G is half the beam-to-impacting mass ratio. The beam will collapse under static
tip forces larger than P' MoiL so Martin's upper bound on tip displacement is 8** ==
GL(v<)2/2Mo. Consequently,

(36)

An analytical solution to this problem by Parkes[l6] involves a hinge that starts in the interior
of the beam and moves to the base. The final tip displacement is

2Mol>IGL(v<)2 == [(1 + 1)-1 + 21- 1 In (l + y)]/3. (37)

These bounds and the analytical solution are compared as a function of the mass. ratio in
Fig. 4. When the beam has negligible mass in comparison with G, the assumed and analytical
deformation modes are the same. Hence, at 'Y;=: 0 both bounds converge to the analytical
solution. Since Martin's upper bound is independent of the beam mass in this problem, it is not
as close to the solution as the lower bound for large values of 'Y.

Circular plate under uniformly distributed pressure
A circular plate of radius R and mass m per unit area is accelerated by a pressure p(O

distributed uniformly within a central circle of radius a. Lower bounds on the displacement will
be obtained for simply supported and clamped boundary conditions.
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The assumed velocity field is piecewise linear and symmetric about the centre.

Ii* = v*(R - r)IR for 0:0;;; r:O;;; R.

The associated curvature rates for r < Rare

1057

(38)

(39)

With a Tresca type yield condition this implies M, < Mo. Me = Moso the energy dissipation rate
for a simply supported plate is

(40)

For a rectangular pressure pulse, the bound on response time will be

(41)

Thus, the lower bound on centre displacement is

(42)

When the edge of the plate is clamped rather than simply supported a yield hinge exists at
the edge where K, = v*lR. In this case, M, = Mo at r = R and the energy dissipation rate for a
clamped plate is

(43)

The energy dissipation at the edge and in the interior of the plate are the same. The bounds on
response time to a rectangular pressure pulse are

t/ = (PTa1(3 - 2aIR)/12Mo

resulting in a bound on the centre displacement

(44)

(45)
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CENTER DISPLACEMENT OF UNIFORMLY LOADED CIRCULAR
RIGID-PLASTIC PLATE

Fig. '.

In Fig. 5 these lower bounds and Robinson's upper bounds for the final centre displacement
of simply supported and clamped plates are compared with the analytical solutions by Hopkins
and Prager[17] and FIorence[18] respectively. Both bounds have the proper functional behavior
and the correct origin at 7rR 2/PF;' == 1. In this case, the upper bound is closer to the analytical
solution. This is not surprising since Robinson's upper bound uses the analytical solution for the
early time, moving hinge phase of motion, whereas the lower bound was calculated from a
velocity field that was assumed to be linear.

When the rectangular pressure pulse acts only on the central area of the plate, additional
stages can arise in the deformation process. The lower bound on deformation does not depend
upon these details and consequently, the assumed and actual velocity fields can be quite
different. Figure 6 compares these bounds with an analytical solution for a clamped plate by
Florence[19]. The lower bound is approximately half the analytical result. A distributed static
collapse pressure for a clamped plate Po == 4Mo/a

2(l- 2a/3R) has been used to obtain a ratio of
peak to static collapse pressure, PIPo.

Annular plate response to transverse pressure pulse
A simply supported circular plate containing a central hole with radius" a", is subjected to a

temporally rectangular pressure pulse. Spatially, the pressure increases from zero at the
supported edge to P at the hole. Deflections of this plate are considerably reduced by
membrane forces, even when they are less than the plate thickness. Bounds related to both
flexural and membrane deformations will be compared with an analytical solution by Jones (20].

The velocity field is assumed to decrease linearly from the inner to the outer edge; that is

Ui* == v*(R - r)/(R - a).

The associated curvature rates for r < R are

(46)

(47)



Lower bound on deformation for dynamically loaded rigid-plastic structures 1059

._0-·--'

analytical solution

aIR = 0·438 lower bound._._._._._.

0·07

oOL...J~2---l4-~-~8--:':10,-.-.J1~=----=1L~-1,L~-

P/Po
CENTER DISPLACEMENT OF CENTRALLY LOADED

CIRCULAR RIGID-PLASTIC PLATE

Fig_ 6.

0·06

0-01

005ex....
\'

Q.. 0·04

~
J: 0.03.s

0-02

so Mr < Mo and Me = Mo· The energy dissipation rate for this flexural mode of deformation is

(48)

which is the same as that of a full circular plate. For a distributed pressure

p(r, t) = {~(R - r)/(R - a) t<T
t > T.

(.:1Q)

A bound on response time is

tt* = PT/Po (50)

where the static collapse pressure for the plate with this pressure distribution is Po =

6Mo/(R - a)(R +2a) and the static collapse force distributed around r = a is Tt = hMo. When
the mass per unit area is m, the lower bound on final displacement at the inner edge will be

5 ~ 3MoP 2
T

2
(l- Po/P)

mPo
2(R - a)(R +2a}"

(51)

A membrane, rather than flexural, mode of deformation can be considered using the same
conical assumed velocity field as in eqn (46). When Ua denotes the transverse displacement at
the inner edge, the in-plane strain-rate components associated with this velocity field will be

(52)

For a plate of uniform thickness H, and a yield stress U y, the energy dissipation rate resulting
from this circumferential strain-rate field is

(53)

Recalling that Mn = u yH 2/4, the lower bound on response time to the rectangular pressure pulse

55 Vol. 19. No. 12-C
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in eqn (49) is

W.1. STRONGE

(54)

The lower bound on final deformation at the inner edge for this membrane mode of deformation is

PT
2
[( 4mH)I/2 ]

{) ;;;. 4m 1+ PoT2 - 1 . (55)

Both the bending and membrane lower bounds on maximum deformation are compared with
the analytical solution by Jones in Fig. 7. The additional stiffness due to membrane forces is
evident in this figure. Membrane forces dominate at deflections larger than the plate thickness.
Whereas bounds on the bending solution are half the analytical result, bounds on the
membrane solution are much closer. This accuracy results from the assumed mode of
deformation being a better approximation to the deforming configuration during motion of the
plate.

Cylindrical shell response to radial pressure pulse
A rigid-plastic shell of radius R, thickness H, length 2L and mass per unit area m is

subjected to a radial pressure p(t). Both simply supported and clamped end conditions with
axial constraints are considered. Deformations of this shell have been determined by Hodge for
several pressure pulse shapes [21]. His analysis applies to small deflections. When deflections
become large in comparison with the shell thickness, both bending and membrane forces are
important. For the case of impulsive pressures and short shells, Jones showed that the shell
deformation is considerably reduced by membrane forces [22]. A lower bound on the shell
deformation in the range of large deflections will be calculated and compared with these
analytical solutions.

A lower bound on maximum deformation can be calculated by assuming a radial velocity
field that is symmetric about the centre and increasing linearly from the ends,

:to<0

u*=v*xIL for O<x<L.

ANNULAR PLATE DEFORMATION BY RADIALLY
DECREASING RECTANGULAR PRESSURE PULSE

Fig. 7.

(56)
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This velocity field results in a yield circle circumscribing the shell at the centre where the
curvature rate is Kx =2v*/L. In the case of clamped ends, there are also yield circles around
each end of the shell where the curvature rate is Kx = v*/L. (These yield circles correspond to
yield hinges in a plane structure.) Throughout the shell the axial and circumferential inplane strain
rates are

(57)

For a yield surface that involves no interaction between stress components, these strain rates
result in an energy dissipation rate

(58)

where a =1 for simply supported ends and a =2 for clamped ends. The response time of the
cylindrical shell to rectangular pressure pulses of duration or is bounded below by

*_ Por(a +c)
tf - Po(a+c+4S/H) (59)

where the static collapse pressure is Po =(l +a/c)No/R and c =2e/RH is a parameter
describing the shell geometry.

Rigid-plastic structural deformation is generally a function of applied impulse squared.
Hence, a loading parameter for the rectangular pressure pulse is defined as I/J = p 2

T
2fmPoH where

P is the pressure magnitude. Using this parameter, the lower bound on radial displacement at the
centre of the shell can be expressed as

8* = (a + c + 2PoI/J/P){ -1 + [1 +SI/J(a + c)(l- PO/P)]1/2}.
H 8 (a +c +2PoI/J/p)2 (60)

In Fig. 8 this lower bound and an upper bound by Ploch and Wierbicki [3] are compared with
the small and large displacement analytical solu,tions for impulsively loaded, simply supported,
shells. When the shell is clamped rather than simply supported, plastic deformation involves
hinge circles at the ends. For the same loading impulse, the additional energy dissipated at end
hinge circles causes a clamped shell to have less deformation than a simply supported shell. In

(=1
pip. =00

3

2

5

SIMPLY SUPPORTED CYLINDRICAL SHELL DEFORMATION
BY IMPUlSIVE PRESSURE

Fig. 8.
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CLAMPED CYLINDRICAL SHELL DEFORMATION BY
RECTANGULAR PRESSURE PULSES

Fig, 9.

Fig. 9, lower bounds on plastic deformation of clamped beams are compared with analytical
solutions for high and low pressure rectangular loading pulses. (Note that the loading parameter
ljJ depends on Po = No(a. + c)/Rc so it is not apparent that for the same pulse, the deformation
in Fig. 9 is larger than that in Fig. 8.) These comparisons have been made for short shells (c = I)
where the energy dissipated in bending and membrane deformations are comparable at 0/H = 1,
With long shells, the effect of end constraints on plastic deformation will be less significant.

CONCLUSION

A more concise and less restrictive expression for a lower bound on maximum final
displacement resulting from time dependent tractions with arbitrary spatial distribution has
been determined. Together with a complementary upper bound determined by Robinson[5], this
provides an easily calculated method of obtaining limits on plastic deformation due to transient
loads. The method has been used to analyse both small and large deformation structural
response. Large deformations are brought into the analysis by considering the membrane stress
distribution in the assumed deformation velocity field.

The displacement lower bound and the analytical solution have been compared for five
different structural elements. Accuracy of the bound depends on how closely peak values of
work rate done by applied tractions acting through the assumed velocity field represent the
mean value. With uniformly distributed tractions and l·dimensional deformation fields, the
bound and the analytical solution are close. With concentrated forces and 2-dimensional
deformation fields, the bound and the analytical solution are further apart.
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